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A method is described for the calculation of the eigenvahres of genera1 integral 
operators. Several classical results from functions of a complex variable and the theory 
of integral equations are combined with a recent technique for converting Fredhohn 
integral equations into an initial-valued system of differential equations. The technique 
applies to both symmetric and nonsymmetric kernels. 

1. INTRODUCTION 

In this paper we shall combine some of the classical results of Fredholm [1] 
and complex variable theory [2] with the recent techniques [3,4] of initial-value 
or Cauchy systems for integral equations with general kernels. The combining 
of these modern and classical techniques leads to a flexible and accurate method 
for the calculation of complex eigenvalues. The method is of particular interest 
in that it applies to both symmetric and nonsymmetric kernels. Related work for 
real eigenvalues only is contained in [5]. 

2. CAUCHY SYSTEM 

We wish to solve the homogeneous equation 
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Fredholm [l] showed that the resolvent K(t, y;X) of the kernel k(t, y) could be 
expressed as 

(2) 

where D(t, y; h) and D(X) are entire functions of h. He also showed that D(t, y; X) 
and D(h) are related by the differential equation 

a@) = - 1; NY’, Y’; a dY’ (3) 

and that 
B(0) = 1. (4) 

The subscript in (3) denotes differentiation with respect to X. The eigenvalues are 
the roots of the equation 

D(A) = 0. (5) 

At a simple root h = X* an eigenfunction is given by D(t, y; A*) for any y. 
In recent work [3,4] it has been shown that the resolvent kernel K(t, y; X) 

satisfies the Cauchy system 

at, Y; 4 = I1 m, Y’; 4 K(Y’, y; 4 dY’, 0 < CY < 1, (6) 
0 

subject to the initial’condition 

m Y; 0) = w, Y>* (7) 

If desired this system can be easily solved numerically to actually produce the 
resolvent K. 

It is then a simple matter to show (using (2), (3), and 6)) that the function 
D(t, y; X) satisfies the differential equation 

and from (2), (4), and (7) we find that the initial condition for (8) is 

w, Y; 0) = w, Y). (9) 

From the theory of complex variables [2], the number of zeros, N, of D(h) (each 
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counted with proper multiplicity) in a closed contour C, with none on C, is given by 

We shall propose a numerical scheme for evaluating (10). 
Assume that there are no roots on the unit circle. To find the number of eigen- 

values enclosed by the unit circle in the h-plane, we numerically integrate the initial 
value problem for the functions D(t, y; X) and D(h) in (3), (4), (8), and (9) from the 
origin, along a curve having no root of D(h), to h = P, a point on the unit circle. 
In particular, this gives the values of D(P) and D,(P). Then we adjoin the differential 
equation 

dY 1 DA@) 1 
-zi=------ 2viD(h) = % 

- J; DO’, y’; 8 dy’ 
NV 

(11) 

and the initial condition 

to the Cauchy system for D(t, y; A) and D(h) described previously. We now integrate 
this new system around the unit circle. It follows from (10) that the increment of Y, 
which must be zero or a positive integer, is the number of roots enclosed by the 
unit circle. 

In an obvious manner, we can further localize the position of a root to various 
sectors, as when finding the roots of a polynomial numerically [6]. The formula 

1 
zi?c f 

Xk DA(~ - dh = f hik, k = 1, 2..., 
DO) i=l 

(13) 

where A1 , AZ ,..., h, are the roots enclosed by the unit circle, can be used to aid 
in the determination of both locations and multiplicities. Many obvious possibilities 
exist for finding the roots outside the unit circle. 

3. NUMERICAL RESULTS 

We shall present two numerical examples to illustrate the efficacy of the method. 
A Gaussian quadrature scheme of order N is used to approximate the integrals 
in (3) and (8) and a standard fourth-order Runge-Kutta scheme employing complex 
arithmetic is used to numerically integrate the resulting system of differential 
equations. For a quadrature scheme of order N, we get N2 differential equations 
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from (8) and one equation from each of (3) and (11). Additional equations may be 
added from (13) by letting 

$~k=&A”.~, k = 1, 2,.... 

As our first example we shall consider the integral equation 

U(t) = X 1’ ixtU (x) dx, O<t<l. 
JO 

(14) 

(15) 

Since this kernel is degenerate and symmetric it is easy to show that it has one 
complex eigenvalue at X = -3i. For the numerical experiments we let N = 5 
and chose to integrate (3) and (8) from the origin along the positive imaginary 
axis, using a step size of dr = 0.05, to the circle of unit radius. At this point we 
adjoined two additional differential equations for Y and J& . We then integrated, 
using a step size of LIB = i”, counterclockwise around the unit circle. Upon 
returning to the point (0, 1) we obtained the following results for the increments 
inYandQ2,, 

d?P = (1.8672 - 7, 8.1492 - lo), 
di-2, = (-8.2814 - 10, 1.8892 - 7). 

indicating that the unit circle contains no zeros. The process was then repeated 
for a circle of radius four. The results were 

d?P = (1.0000, 1.8623 - 9), 
4.2, = (-3.0542 - 2, -2.9998). 

These results indicate that the circle of radius four encloses one eigenvalue and its 
position is approximately at h = (0, -3). These results could easily be improved 
upon by increasing the number of quadrature points and decreasing the integration 
step size. The second experiment was for the kernel 

k(t, y) = em/4e-rnW-~)2e (16) 

This kernel is quite interesting in that it is symmetric but not Hermitian. Morgan [7] 
has shown that, for such kernels, certain classical techniques, such as Rayleigh- 
Ritz, may yield inaccurate results. Using the techniques discussed above (with 
N = 7 and de = r), we have calculated the first two eigenvalues to be 

A, = (1.0648, -2.5679 - 3), 
A, = (8.9473 - 1, -1.1703). 

58x/12/3-6 
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Morgan does not list the eigenvalues, but the quantities wi = 1 - 1 [Li I*, where 
y, = l/& . He th en compares the results of an iterative scheme with the va.riational 
technique. We compare our results with those given by Morgan. 

WI w2 

variational 0.0607 0.2401 
iterative 0.0800 0.2698 
initial-value 0.0746 0.2650 

4. CONCLUSIONS 

We have described a technique for calculating the complex eigenvalues for 
integral operations with general kernels. The method involves the combination 
of classical results of integral equations and complex variable theory with a recent 
technique for converting Fredholm integral equations into initial-valued differential 
equation systems. The technique is a flexible and accurate method for obtaining 
the complex eigenvalues of general kernels. The calculation of the eigenfunctions 
will be the subject of a future paper. 
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